399 research outputs found

    Multidisciplinary systems optimization by linear decomposition

    Get PDF
    In a typical design process major decisions are made sequentially. An illustrated example is given for an aircraft design in which the aerodynamic shape is usually decided first, then the airframe is sized for strength and so forth. An analogous sequence could be laid out for any other major industrial product, for instance, a ship. The loops in the discipline boxes symbolize iterative design improvements carried out within the confines of a single engineering discipline, or subsystem. The loops spanning several boxes depict multidisciplinary design improvement iterations. Omitted for graphical simplicity is parallelism of the disciplinary subtasks. The parallelism is important in order to develop a broad workfront necessary to shorten the design time. If all the intradisciplinary and interdisciplinary iterations were carried out to convergence, the process could yield a numerically optimal design. However, it usually stops short of that because of time and money limitations. This is especially true for the interdisciplinary iterations

    An integrated computer procedure for sizing composite airframe structures

    Get PDF
    A computerized algorithm to generate cross-sectional dimensions and fiber orientations for composite airframe structures is described, and its application in a wing structural synthesis is established. The algorithm unifies computations of aeroelastic loads, stresses, and deflections, as well as optimal structural sizing and fiber orientations in an open-ended system of integrated computer programs. A finite-element analysis and a mathematical-optimization technique are discussed

    Structural optimization: Challenges and opportunities

    Get PDF
    A review of developments in structural optimization techniques and their interface with growing computer capabilities is presented. Structural design steps comprise functional definition of an object, an evaluation phase wherein external influences are quantified, selection of the design concept, material, object geometry, and the internal layout, and quantification of the physical characteristics. Optimization of a fully stressed design is facilitated by use of nonlinear mathematical programming which permits automated definition of the physics of a problem. Design iterations terminate when convergence is acquired between mathematical and physical criteria. A constrained minimum algorithm has been formulated using an Augmented Lagrangian approach and a generalized reduced gradient to obtain fast convergence. Various approximation techniques are mentioned. The synergistic application of all the methods surveyed requires multidisciplinary teamwork during a design effort

    Advanced structural sizing methodology

    Get PDF
    Research in computerized structural sizing technology was reviewed. Areas covered include: overall design; structural subassembly design; thermal structures; and stiffened panels. In each case, sample results are presented

    Reduction method with system analysis for multiobjective optimization-based design

    Get PDF
    An approach for reducing the number of variables and constraints, which is combined with System Analysis Equations (SAE), for multiobjective optimization-based design is presented. In order to develop a simplified analysis model, the SAE is computed outside an optimization loop and then approximated for use by an operator. Two examples are presented to demonstrate the approach

    Advanced electro-optical imaging techniques

    Get PDF
    The papers presented at the symposium are given which deal with the present state of sensors, as may be applicable to the Large Space Telescope (LST) program. Several aspects of sensors are covered including a discussion of the properties of photocathodes and the operational imaging camera tubes

    Exploiting parallel computing with limited program changes using a network of microcomputers

    Get PDF
    Network computing and multiprocessor computers are two discernible trends in parallel processing. The computational behavior of an iterative distributed process in which some subtasks are completed later than others because of an imbalance in computational requirements is of significant interest. The effects of asynchronus processing was studied. A small existing program was converted to perform finite element analysis by distributing substructure analysis over a network of four Apple IIe microcomputers connected to a shared disk, simulating a parallel computer. The substructure analysis uses an iterative, fully stressed, structural resizing procedure. A framework of beams divided into three substructures is used as the finite element model. The effects of asynchronous processing on the convergence of the design variables are determined by not resizing particular substructures on various iterations

    Synthesis of aircraft structures using integrated design and analysis methods

    Get PDF
    A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements

    Minimum mass sizing of a large low-aspect ratio airframe for flutter-free performance

    Get PDF
    A procedure for sizing an airframe for flutter-free performance is demonstrated on a large, flexible supersonic transport aircraft. The procedure is based on using a two level reduced basis or modal technique for reducing the computational cost of performing the repetitive flutter analyses. The supersonic transport aircraft exhibits complex dynamic behavior, has a well-known flutter problem and requires a large finite element model to predict the vibratory and flutter response. Flutter-free designs were produced with small mass increases relative to the wing structural weight and aircraft payload

    A programing system for research and applications in structural optimization

    Get PDF
    The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of constraints and design variables. Features shown in numerical examples include: variability of structural layout and overall shape geometry, static strength and stiffness constraints, local buckling failure, and vibration constraints
    corecore